
www.manaraa.com

`ED 097 917

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

IS 001 297

Davis, Alan; And Others
Interactive Error Diagnostics for an Instructional
Programming system.
Illinois Univ., Urbana. Dept. of Computer Science.
National Science Foundation, Washington, D.C.
74
14p.

HF-$0.75 HC-$1.50 PLUS POSTAGE
*Computer Assisted Instruction; *Compiter Programs;
*Computers; Computer Science; *Computer Science
Education; *Programed Tutoring; Tutorial Programs
Error Analysis; *PLATO IV; University Of Illinois

The developeunt of an interactive error analysis
system for a highly interactive programing language compiler is
explored. A project is underway at the University of Illinois to
automate the teaching of elementary computer science programing
language courses by utilizing the PLATO IV interactive computer
system. One goal of the project is to provide a highly interactive
compiler/interpreter that will allow beginning programers to write,
debug, and run _fairly simple programs using newly-learned language
constructs. The error analysis and diagnostic routines for the
interactive compiler are divided into two separate systems. The first
is concerned exclusively with the syntactic and semantic errors
associated with program preparation and entry into the compiler. The
second error system is concerned with the execution of the student's
program and the error analysis and debugging that is initiated by the
detection of an execution error. MO

www.manaraa.com

,

Interactive Zrror Diagnortiea

for an

Instructional Programming System*

Alan Davis
Michael H. Tindall
Thomas R. Wilcox

Department of Computer Science
University of Illinois

Urbana, Illinois

U S OSP0X1014161T
Of KO As. tit

eOUCATtON **GOMM
NATIONAL. Oaf tl'Ut Op

IDOCATiOti

TM, P01 FAAEAoT
14AS 0E1 WiPliC

01R vp r icto.to, oit.cr NED ;Rom

1.4 PrilSON
',111C,Ati,jAT`M4 COUCIOtA

Al INC, 1 P0410" OF W4r Clk Ontki0A0

sl Aft r, Alt Ait SNAArti WR flair

INT CO hAtIONAi ,Alyt u Clt

t 114 Firrol,0%

Introduction

This paper is concerned with the development of an interactive

error analysis system for a highly interactive programming language

compiler. Although the proposed system should have reasonably wide

applicability to various time-sharing systems and interactive compilers,

the followim is a description of tbm por41s qn4 (NIngf,vainf.a nf*

particular compiler in which the error system is to be implemented.

A project is underway at the University of Illinois at Urbana-

Champaign to automate the teaching of elementary computer science program-

ming language courses by utilizing the PLATO IV interactive computer system

[21. One goal of this project is to provide a highly interactive compiler/

interpreter that will allow beginning programmers to write, debug, and

run fairly simple programs using newly-leaxned language constructs M.

A requirement for the compiler is that it be able to parse and diagnose

subsets of different programming languages (currently, PL/I, FORTRAN, BASIC,

COBOL) with a minimal amount of redesign required. To change to a new

4(This work is supported in part by the National Science Foundation under
Grant No. US-NSF-EC-41511, and by IBM Corporation.

www.manaraa.com

2

lalkolve, only the now lexical anti t%bles must b.- reat..11(wa

(a relatively stralght-forward process); the bulk of the compiler's on-line

editing capabilities and internal structure can remain. unchanged.

The overwhelming goal and emphasis for this compiler is that it

behave like a "consultant", that is, be able to diagnose program , errors

and help the student understand his errors. A good description of this

"comultant" or "tutor" capability is that of a diagnostic system that

points out different interpretations or ways of COrrectintan ern:* situa-

tion, e.g., a diagnostic "prompter". The goal is not to have the system

attempt: to "recover" from the student's errors, but to interactively inform

the student of an error and attempt to prompt him with suggestions about

ways of correcting the error, requiring the student to actually analyze

the situation and repair the program.

The error analysis and diagnostic routines for our interactive

compiler are divided into two separate systems. The first is concerned

exclusively with the syntactic and semantic errors associated with program

preparation and entry into the compiler [3). The second error system is

concerned with the execution of the student's program and the error analysis

and debugging that is initiated by the detection of an execution emir Ii).

The remainder of this paper will discuss these two error analysis systems.

www.manaraa.com

3

The Compile-time Error Analysin and Diar,nostic System

The environment in which the compile-time-error analysis system

is invoked is the following. As the student enters the program, each

word or "token" that is typed in is examined immediately by the syntax

parser. As soon as an error is detected, the error routine is entered;

this routine attempts to explain the error to the student, as described

later in this paper. When the student understands the error, he must

back up in the input string and repair the error appropriately; he is

then allowed to continue entering the remainder of the program.

The overall philosophy of the approach developed for this error

system is that effective error diagnostics can be given by informing the

student about the current internal state of the compiler. Of interest

to the student might be symbol table information, such as the attributes

of a variable or whether or not a Darticular word is a reserved (pre-

defined) word; dope vector information about defined arrays in the

program; and syntactic requirements, such as what symbols the compiler is

able to accept at a particular place in the user's program. The assump-

tion is that if the compiler's current internal state can be adequately

understood by the student, then the syntactic error (or semantic error,

such as trying to re-declare an identifier in PIVI) will become apparent

and the student can correct the program in the proper manner.

The problem in trying to implement this philosophy is that it is

virtually impossible to know exactly what language construct the student

thought he was using when an error is detected. Different parts of the

compiler's state information may be important to the student in different

error situntions; also, different students in an identical error

www.manaraa.com

It

situation mny very well, need different information to understand their.

error. In an effort to .provide the proper information for. most situations,

this, paper suggests an interactive diagnostic system that tries to present

to the student "intelligent guesses" as to the cause of the error. These .

"guesses" can be deterMined by examining the current input string, the

syntactic requirements, the symbox table, and any other information compris-

ing the state of the compiler; any discrepancies found in the state,

information can be reported to the student as a possible reason for the

error (note that there will always be at least one discrepancy, since an

error wq.s originally detected). A given error situation may cause three

of four (or more) system-generated "guesses" to be ix-esented; the hope is

that at least one of these "guesses" will be cloy; :Lough to the actual

error to reveal the error to the student.

It in instructivc to consider a few examplespf syntactic/

semantic error situations and some appropriate diagnostic messages that

are generated.. All the examples are taken from the PII/I language, which

has been used for our first implementation of this diagnostic system. Work

is in progress to extend the system to FORTRAN. Since the compiler is

intended for elementary programmers, only a subset of the most common

features are accepted (in particular, for these examples the conditional

expression in nn "IF" statement is assumed to be a relational-type

expression).

www.manaraa.com

ITEM,

Example 1:

Assume .tha, .following string is input. to the compiler:

IF A 7 WC THEN

An initial diagnostic message ls given,:

IF A -B /C

**********It*FOssible Correction*v**********

Replace "THEN" with an arithmetic-operator.

the student requests further analysis, another message is:

IF A-B /C

**********v*POssible Correction***********

Replace "THEN" with .a relational operator.

A further request for analysis would yield:

Example 2:

IF IA - B/C THAT

*W**********Pilnqih1P. f'nrro^tinn************

Replace this arithmetic expression with a conditional expression.

Assume the following string is input to the compiler:

I = * 10 TO

tae message that is given is:

I = J * 10 TO

****X*****A*possible Cerrection*********

Replace "TO" with an arithmetic operator or a .
Another message is:

= * 10 TO

*******x*x**Possible Correction******

Insert "DO" in front of the identifier "Is.

www.manaraa.com

Ft' OM these e+xnmpl e i it is ap7trent that the error system is

tryinL; to give the student well - directed hints about possible causes for

the error situation. Note also that these messages first make suggestions

about possible "local" corrections to the progrnm, assuming that every-

thing that: was input before the token at which the error was detected is

correct. If the student requests further suggestions, then the error

analysis system considers corrections of text to the left of the error

token. Besides being perhaps the most natural order of analysis, this

method also is rood from .a computational point of view: as more and more

left context is considered, the amount of computing required to determine

a possible suggestion increases rapidly; the hope is that the first feW

initial messages will cause the student to discover the error, and that

the more expensive suggestions, while always available when needed, will

'tut Le requiAed wuell of the Livia.

Consider another example:

Example 3:

Assume that the following declaration is made at the beginning

of the program:

DECLARE A(10), B;

Then suppose that the student later types in:

B = A

One message that is given is:

B =

****xxxx****Dossible Osrrection***x********

Insert the array subscripts in front of the ";".

www.manaraa.com

Anothfw No:::::tr:o

B ;

*** ***IC* X' X X *Toss ible Correction**x******m

Replace array reference "A" with an ordinary identifier.

This example illustrates another feature of the diagnostic

system. The analysis routines and corresponding diagnostic messages are

able to manipulate and'display information about important language con-

structs, such as " array* subscripts ", "expressions ", "statements ", etc.

These high-level constructs are em; .zed during the teaching of a

programing language and should be referred to at appropriate times by

the diadnostic system. It is essental that the diagnostic system be

capable of making suggestions using terminology that is understandable to

the student.

One final requirement for the compile-time diagnostic system is

that as much of this "prompter" as is possible be built into the compiler

and provided automatically for different programming languages. The key

to achieving this is to have the diagnostic system be driven by the syntax'

parser table and compiler symbol tables. Then, constructing compiler

parser and symbol tables for a new language will be sufficient to allow

the proper operation of the interactive diagnostic prompter.

Let's now examine the error analysis and diagnostic system that

is used to assist the student with program execution errors.

www.manaraa.com

Rvn-tirc Error Annlysis

For pro exam execution .it is assumed that the program being

given to the execution paokar:e is a syntactically correct proms) for

the language being written. This is insured by the process of immediate

detection and annlysis of syntax errors as described in the previous

section. The run-time supervisor is an interpreter which interprets a

tokenized version of the original source language program. During

interpretation of each statement, error conditions are tested and, if

located, an appropriate error message is displayed to the student. If

the student requests help, control then passes to the execution -time
t

error analysis program.

The error analysis program scans the student's program looking

for conditions which it knows are common causes of errors. Note the

distinction between an error and a cause of an error. An execution error

is any illegal condition which the interpreter can find by examining

various data structures in the run-time environment (e.g., subscript out

of range). The cause of an error is the mistake in logic or in the use

of a programming language feature that resulted in that error (e.g.,

improper declaration of an array). The scan for these causes is done

by reverse executing the program, statement by statement, starting at the

position of the error. This reverse execution insures that the analysis

routines are examining each statement in the same execution environment

in which it was executed during forward execution.

When a potential cause for an error is located, a discussion

with the student is initiated concerning that condition. For example,

when the following simple Pill program is executed, the indicated error

is detected:

www.manaraa.com

011 _Pt. I rTrIrrioN

tY.ftteli.. t : rPO.TrY T-17. OPTIMr. MAIM ;
. . VE.C.LftPE STRING 00:t.P t i 0; ;VW ,POS LeED;

, SWING* 68CDE ;
POS. MEC; tf.TPING. 'X I

..... STRINS.S.18STR STP/NC.E4 ;
END.

E.eco.tt ton Er r : or 9..6STPING < I .

If the student type: HELP, then the error analysis system commences its

reverse execution. When a statement is located which is relevant to the

error in question, '.hat statement if flagged and brought to the attention

of the student:

rif-t -Titr rP;e4t

EXAMPL I s .PROCEIVRE OPTIONS MAIM ;..= it r I: rO;
.STRINGs"PBCOE';
ei5:1, MEC.< 1.'7.11.-T.' 7- ,

RINC.s$SUMIR
END:

--..M/So

enSITICIN Cr ENte.71...ITION CPPOP
This statement save KS an tmorreet value of O.

www.manaraa.com

Next, that nta(:ement in examined Cor possible eondltionn which might have

eauned the error. In this particalar case, a built -in Cunction,'INIWA,

has returned a :,,pecial-oase re ult. This fact, if described to the

student may holp the student to understand why his error has occurred;

EXECUTION-TIME ERROR ANALYSIS

EXcIMPLI: PROCEDURE OPTIMSCIAIN) ;
DECLARE STPIt4 CI-OR (la) 1VAL7tING, ,POS.FIXED;

STRINCs*Ae.CDE';
POS.F:CC, rff-P I 1.1,;_t

ING.SUFI;TR tSTPL NG, E.

END;

This statement gave
POSITION Or EXECUTION EPPOR

an incorrect value of 8.

INDEX returned a value of zero here bezauee the
strin3 'X' could rot be found anywhere in the string
'010CDE'.

If the student now understands what caused his error, he may choose to

edit and re-execnte his program. If he chooses to request more help,

the values of the operands involved are discussed and the student informs

the analysis program whether they seem reasonable of not

www.manaraa.com

E> CUTION-TitE FPPOR RNA. f4:;'IS__---------

EXAVFLII_PkOCEPUPE OPTIOUCMINJ:
DECLARE STRIN3 CI*W(10/ .VAR1:14G, POS PIXCO;.....
pos itxtEx IFIFFF41, ;

RING.StilS7t;;(:.11-.14;tAt ;

.END;

POSITION, OF EXECUTION EAR(
This statement (re. POS an inzorr-.ci slue of S.

=0.

s a value of FIBCDE1 looP reascn,b1 for SWING'
XI you are rot ats,2141,212 amwer nos

If the student now respondn by saying that all the values are indeed

correct then the present expression being examined must be incorrect:

EYgCUTI(-TIME EPPOR ANALYSIS

EXAMPL1: .0ROCEDURE OP;IONSIMAIN);

DECLARE STRING C141P(102.VAMING, POS FIXED;
STRING.'ABCVE":
POS. fCCC< tSTPIVIC. ;

INC,=SUMAIR tSTkil ri?..... ,DO;

POSITION OF EXECUTION EPROR
This statement.gove an incorrect value of B.

On the assumption that all of your previous
retpc.nnes werl true. thof .".pre,..$1c)n
c4.1)tatn3 a TL-t. t-r
that you s1... th't ,l V.71r$M*1+4.$ COtet4tral Within
st contain values, kcit th 4.,Atnation
variable M3 tlr!. pet'ultitt; value.

www.manaraa.com

If tho stulent rospontlea by sny IN,: that some or the variables

111.1 qest.lonlble v:tlues. thon oror analysis would continue in the reverse.

lirection 1 IA inr. for stne!.lents ef feet those new variables.

It is -hoped that this simple example demenstraton the type of
analysis performed. Ely the: the stIldent numerous intelligent comments

about poli4lons in Ks proi;ram which or rolevnut to ,tbe exocut.ion error,

it is hoped that the student will comprehend why his error occurred. As

ciiriz j, compile-time error analysis, numerous suizeztions are made to the

studpnts, but it is they who must deride how to earreet their programs

since only they can know what their programs were supposed to do.

www.manaraa.com

a. i

Com-11111 on

Try sulluwiry, th1:1 h:1:1 disolod an -Approach to progur. error

analysht t?-it en:ph-!;TI:-,es tho of` a prcy,raminc: langunr,e '!tutor"

or "eonz-,uatuit" When a .eonT '4ut-totie error is detect ed. the

dinc.,nontr3,- system tries to "prompt" tho ztuciont, into analyzing tii error

situatitin I y e:ivinic the stutiont it in the form of "ix-Nssible corrections"

to the For an executl on error, the diagnostio system trios to

direct t.h student in analyzin; the error -Fittultion by shOwing how various

1'00%1:Int. flei..!tions of the proirxxa were actually. executed.

At. the prer.ont time, the two diagnostic systems described have

been itplomentod prototype form in the interactive eompiler on the

.PIATO IV eon:puter-tided instruction system. Work is- in progress to refine

the iniLial versions and to provide more complete terminology for communi-

ont-ino- with t.hr stnilent.

www.manaraa.com

Eat

REFETF,N0113.

Davis, A. -M., "An Airily:II {,..(rn For Kvecution-Timo Errors,".
Ph.D. Thosis. Departmont of Covv:ter Soionee, 'University of Illinois
at Urbana -0) irunprt , Jan, 1,..175.

Nioverr,e1 t J., Reinc.old, F. M., and Wilcox, T. R. "Th0 Automation
of IntroA!,ctory Computor Science Courses," A. Gunther et al.. {editors),
international Computing Symposium 1973, North-Holland Publishing,
Co.

131 "Internetive, Table-DriVen Compiler Error Analysis,"
forthcoming Ph.D. thesis, Department of Computer Science, University
of Illinois at Urbann-Chamixtign.

[41 1111coy:, T. R.., "The Interactive Compiler As A ConsUltant In The
Computer Aided. Instruction of rrogramming," 7th Annual Princeton
Conference on Inforration Sciences and Systems, 1973.

