DOCUNENT RESUME

'ED 097 917 | | IR 001 297

AOTHOR Davis, Alan; And Others I

TITLE Interactive Error Disgnostics for an Instructional -
: Programming Systen. .

INSTITUTION Illinois Univ., Orbana. Dept. of Computer Science.

SPOKS AGENCY National Science Poundation, Washington, Dd.C.
PUB DATE 74

~ NOTE - 14p, _
EDRS PRICE MF-$0.75 HC-$1.50 PLUS POSTAGE ; o
DESCRIPTORS *Computer Assisted Instruction; *Computer Prograas;

*Computers; Computer Science; *Computer Science
, Education; *Programed Tutoring; Tutorial Prograsns
~IDENTIFIERS - Brror Analysis; *PLATN 1IV; University Of Illinois

ABSTRACT - o | SRR
) . - The developaent of an interactive error analysis
system for a highly interactive programing language coapiler is
_explored. A project is undervay at the University of Illinois to
automate the teaching of elementary computer science programing
.language courses by utilizing the PLATO IV interactive computer
system. One goal of the project is to provide a highly interactive
compiler/interpreter that will allow beginning programers to write,
debug, and run fairly simple programs using newly-learned language
constructs. The error analysis and diagnostic routines for the
interactive compiler are divided into two separate systems. The first
is concerned exclusively with the syntactic and semantic errors
associated with program preparation and entry into the compiler. The
second error system is concerned with the execution of the student's
program and the error analysis and debugging that is initiated by the
detection of an execution error. (WH)

~ 00 477

=

Interactive Hrror Diﬁgniastics -
for an
Instructional Programming System#*

Alan Davié

. m“m.ﬂt
s DEPRRTMENTCR 0y
: : agucnﬂﬂﬂl € OF
Michael H. Tindall SSniowa LTy -
T}}omas Rc Wilcox . x“u!\ﬂ'\\' whs BEEN :F&RO\“
.) - TTH;Q‘{?(:‘.IA““‘ as k‘"—;:‘_ ;EQOR‘G"‘
’ 4) 9...; B RSON 0*; ;’gf’:,’f‘,*gé OFINIOND
Department of Computer Science ATt PETS O SR ¥ RLPRE
y sratind ¢ ANAL NSTITL
University of Illinois lexror A A e oY
Urbana, Illincis : |

Introduction

‘This paper is concerned with the development of an interactivé
error anajysis systém for a highly interactive programming language
compiler. Although the proposed system should have reasonably wide
.applicability to various time-sharing sysiems éfxd interactive compilers,

the following is a description of the goals and eemetvainte ~f g

~ particular compiler in which the error system is to be implemented.

A project 1s underwsy at the University of Illinois at Urbana-
Champaign to automate the teaching of elementary compﬁ;er science program-
mingy language courses by utilizing the PIATO IV intcractive computer system
[2]. One goal of this project is to provide a highly interactive compiler/
interpreter that will allow beginning programmers to write, debug, and
run fairly simple programs using newly-learned langusge constructs [4].

A requirement for the compiler is that it be able to parse and diagnose
subsets of different programming languages (currently, PI/I, FORTRAN, BASIC,

COBOL) with & minimal amount of redesign required. To change to a new

X This work is supported in part by the Natlonal Science Foundation under
Grant No. US-NSF-kC-41511, and by IBM Corporastion.

lnngu&ré, thv Lhc néw luxical und nynﬁnvtivwl {lec“ musi Lie fcdo'lrnéd

(a rclatlvelv °tr:xrht forward pro;es“), the bulk of the compiler's on~]ine
editinﬁ Lapwbilitlcﬂ and internal structure can remain unchanged.

| The Overwhglm;nu goal and emphzais for thia compiler ia that it

behave like a cunuultnnt“ thtt is,- be able to disgnose propramming crrors
and help the student undcrutand.his errors, A good description of this

"eonsullant” or "tutor™ capahillty is that of a diagnostic system that
points out differént interpretations or ways.of correcting'an error situa-
 tion, Cufley 5 diggnostic "prcmpter“l The goal is not to have the sysﬁem ‘
attempt fo recover" from the student's errors, but to interaotivexy inform
the student of an error and ettempt to prompt him with suggestions about
ﬁw&ys of correcting the error, requiring the student to actually analyze
the situation and repair the progran. “

The error analysis and diagnostic routines for our interactive
compiller are divided into two separate systems., The first is concerned
exclusively with the syntactic and semantic errors associabed with program
preparapion and entry into the compiler [3]. The second error system is
concernad with the coxecution of the student's program and the error analysis
and debugming that is initiated by the detection o an execution errur [11.

The remainder of this paper will discuss these two error analysis systems.

The Compile-tlme Error Analysis and Dingnostic Svstem

N The én#irénmont_innwhich Lhe compile-time error analysis system
is invoked is the following. Aé the student enters the program, éacﬁ
word or "token" that is typed in is examinéd immediately 'by the syntax
vyarser. As sopﬁ as an errof is detected, the errdr routine is entered}
 this routihe_attempts 0 explaiﬁ the error to the student, as described
lgtér in this paper. When the student understands the error, he must
back up in the input striﬁg and rcpair the error appropriately; he_is
then aii&wé& Lo cohtinue‘ehtcrihg the rcmainder‘dfvthe program. |
. The overall philosophy of the approach developed for this error
 system 1s that effective error diagnostics can be given by informing the
student about the current internal state of the compiler. Of interest
to the student might be symbol table information, such as the attributes
Cof a variahlé 6r whether or not a particular word is a reserved (pre-
defined) word; dope vector information about defined arrays in the
program; and syntactic requirements, such as what symbols.the compiler is
able to accept at a particular place in the user's pfégram. The assump-
tion is that if the compiler's current internal state can be adequately
understood by the student, then the syntactic error (or semantic error,
such as trying to re-declare an identifier in PL/I) will become apparent
and the student can correct the program in the proper manner.

The problem i; trying to implement this philosophy is that it is
virtually impossible to know exactly what languarme construct the student
thought he was using when an error is detected. Different parts of the |

compiler's state information may be important to the student in different

error situstions; also, different students in an identical errer

situntion may very well nced different information to understand their
efror. In an effort to provide the proper information for most situations, .
this paper SUQgedts an interactive diagnostic syStem tﬁat tries to present

" as to the cause of Lhe error. These

to the student "intclllgent guesse"
"ruesses” can be detormined by examinihg the current input. string, the
Syntdctic requirements, the syMbox‘table,‘and any other information compris-
| ing the state of the cd@bilcr;'any discrepanéies fouﬁd in the stéter
information can be reported to the student as & possible reason for the
error (note thmt there will always be at least one discrepancy, since an
. error was originnlly detected). !\g;ven error situation may cause three
of four {or more) system-generated "guesses™ to be presented; the hope is
that at least one of these "guesses“ will be closc zough to the actual
error to reveai the error to the student.

I4 45 inst uctivé to ccnzidcr 5 four exnmples of synbactic/
semantic error situations and some appropriate diagnostic messages that
are generated, All the examples are taken from the PQ/I language, which
has been used for our first implementation of this diagnOStic system. Work
is in progress to extend {he system to FORTRAN., Since the compiler is
intended for elementary programmers, only a subset of the most common
features are accerted (in particular, for these examples the conditional

expression in an "IF" statement is assumed to be a relational-type

expression).

1

Exﬁmgle 1: _
- Assume the following string is input co the compiler:

IF A - B/C TIHEN
An initial diagnostic message is given:

IF A-B/c [mun]

Replace "THEN" with an arithmetic operator.

If the student requests further anulysis, another message is:

IF A - B/c [miEn]

KRXEEEEXREKEXN%POSS ible Cor rection¥ 6 X
Repléce "THEN" with a relational operator.

A further request for analysis would yield:

IF |A - B/C| THEN

FRXE R ERRAAPNISIN LA Carnvent {1 AnKREERE 6K R 6

Replace this arithmetic expression with a conditional expression.

Example 2:
Assume the following string is input to the compiler:

I=J%10 TO

Oine message that is given is:

I=J%10 |10

R %X XXX ¥Inss ible Corroection e X% Xy

Replace "TO" with an arithmetic operator or a ";".

Another message is:
[@H=a%10 10

FHN R XK X X:)époss ible Correoction %% SE6eke 6%

Insert "DO" in front of the identifier "1I7.

6

From 1h0ﬂn anmplo. it iq apnﬂrént that the error sv~tem‘iu
trying to give the siudont well-dxrcgted hints about possible causes for
the error situation. Notc also that Lhése messuges firét make sﬁgyestioné
about p0“81ble "local" corrections Lo the program,‘assumlnp that every-
thing thqt was inpu{, before the token at which the error was dctccted is |
corvﬂct. If the studcnt requesis further suggestlons; thcn the error
anx?yqi rqtcm éonsidcrs cozrectlnns of text to the left of the error
token. Besides being perhaps the nwst natural ozder of ana}ysis, this
method also is good from.a computational point of view: as morec and more
‘Ieft context is considercd, the amount of computlng required to determine
a possible suggestion increases rapxdly' the hope is that the first few
initial messagoes will cause the student to discover the error, and that
the more expensive Suggeétions, while aiways available when needed, will
oL Lo requlired such of the Like.

Consider another example:

Example 3:

Assume that the following declaration is made at the beginning

of the program:
DFCIARE A(10), B;

Then suppose that the student later types in:
B=A;

One message that is given is:

:AB

RIKR XXX X E¥ X POgsible Correctlon ¥EX ¥4 X8

Insert the array subscripts in fromt of the ";".

Another meconee ing
B (4]

| REERREXRKEX¥TOSE1b1e Correction xKrkEexeinx

Repluce nrray reference "A" with an ordinary idéntifier.

This examﬁle illustirates dndthcr féature of the diagnostic
~ system. The analysis routines and goxresponding diagnoutie messages are
. able to manipulate and - dISplav infnrmation about important language con~
structs, such as "array subseripts"®, ”expressipns", "statements", etc.
Thesé hiph-lcvel eonstructs are cm géed during the teaching of s
prunrzmminw language and should be 1eferred to at appropriate times by
;'the diagnostic systom, It is essent’ al that the diagnostic ay»tem be
capable of making suggostions using terminology that is understandablg to
the student.

One final requirement for the compile-time diasgnostic system is
that as much of this "prompter™ as is possible be built in‘o the compiler
and provided automatically for different programming languages. The key
to achieving this is to have the diagnostic system be driven by the syntax '
parser table and compiler symbol tables. Then, constructing compiler
parser and symbol tables for a new language will be sufficient to allow
the proper operation of the interactive diagnostic prompter.

Let's now examine the error analysis and diagnostic system that

is used to assist the student with program execution errors.

Run-tire Frror Annlgﬁis

For program qxeéution,:it,is'nséumcd that the program being
given to the execuplon package is a syntactivally correct proprvm for
the lungﬁage béihg written. This is insured by the procCSa of immediate
deteotzon and'uxq7v613¢af syntaa errors as described in the previous
seetlmn. The run-time supervlsor is an interpreter which interprets]
tokenized version of the originql source 1anguaae program. During
1nte1p¢etatxon af each statcmcnt, error conditions are tested and, if
located, an appropriate error message is displayed to the student. If
the student reques ts help, control then passes to the execu 10n—time
© error analysls progran.

The error analysis program scans the studenﬁ's program looking
for conditions which it knows are common causes of errors. Note the
~ distinction between an error and a cause of an error. An execution error
is any illegal condition which the interpreter can find by examining
various data structures in the run~time enviromment (e.g., subscript out
of range). The cause of an error is the mistake in iﬁgic or in the use
of a programming language feature that resulted in that error G-
improper declaration of an array). The scan for these causes is done
by reverse executing the pregram, statement by statement, starting at the
position of the error. This reverse execution insures that the analysis
routines are examining each statement in the same execution environment
in which it was executed during forward execution.

When a potential cause for an error is located, a discussion
with the student is initiated concerning that condition. For example,
when the following simple PL/1 program is executed, the indicated error

is detected:

"L T ETOITIoN

ENrePL 1 PROCEEY ‘T‘!' N’TI"Q""‘ *NﬁTN\ $
DEILAFE STRING Ches® 1103 | Vb ING, Pus FI-ED;
. STPING« ' FA(DE";

POSaINENSTRING, 'X")

STRING-SUBSTR ‘STRING B0 3

END; L . oL

Evecution Errar: INDE. OF SLBSTPING ¢ .

If the student tyves HELP, then the error analysis systom commences its
- reverse execution. When a statement is located which is relevant to the

error In question, that statcment if flagged and brought to the attention

*

of the student:

LTI TIHE PR a8y *'I’

e m—reaa o 1o o S

EXNPLE: PROCEDURE OPTIONS ARIND
e TToD0sn el ¥ ftas, RS T ED;
STRING="RECOE "¢

ARLINOE™ T, 2oy

FTRING=SURS TR (b TR ING, v:y;

........

POSITION OF DNCCUTION EFPOR
This statemsnt gave PUS an incorrect value of 2.

10

Next, that stalement is examined for pos:;‘.iblev(-onciitionﬂ which might have
caused the crror; In this pmrticulfx case, a built in function, INDEX,
ha., returncd 2 specind-case vos ult. This fact, if do..'cribod to the

student mzy help the student to undcrﬂtani why his error hub occurraed:

EXECUTION-TIME EFROR H‘&Y‘SIS

EXAHPL 1 .FROCEDURE OPTIONS (AIN |

e ern.....DECLARE STPING CHR(18) ‘VARYING, .FOS .FIXED;
......... STRING= "ARIDE "5

......... POSnﬁmmf tSIF IS, z_p

INGSURSTR lSﬂ}.IN&:.Eu‘

........ END;
‘ / ' POSITION OF EXECUTICON ERPOR
This statement gave/P0S an incorrect value of 2.

INDEX returned a value of zero here because the
strinz ‘'X° ceuld mot k2 found amwhere 1n the string
RRCDE".

If the student now understands what caused his error, he may choose to
edit and re-cxecute his program. If he chouses L0 reguest more help,
the values of the operands involved are discussed and the student informs

the analysis program whether they seem reasonable of not:

E.'),'ECUTICN TINE_EFPOR FNAYL !‘HIS

EXAMPLY ¢ Pm:"rwz oprmrrrmm;. I
......... DECLARE STRING mmm vm NG, POS FIXCD;

. . STRING= "ABCDE '
,,,,,,,,, POS= INDEN J:T-F-'“IM A
........ RIN.nSLE’H?F,(.M- iy ..f_'ful"}' ; |
. ” END: / \)
. ~ POSITION OF EXECUTION £PRUR
Thia statement gile POS an incarreot ralue of 8.

Poes a value of 'FBLLE" 1ok reasensble for SIPING?
If you are nct atoelutaly positive, anzwer not

Iif tho student now responds by saying that all the values are indecd

correct then the present expression being examined must be incorrect:

}
EXECUTION-TIME EFFOR ANALYSIS
EXAMPLI: FROCEDURE OF/IONS (MATN) ;
......... . .DECLARE STRING CHAR (10} VARYING, POS FIXED;
......... STRING='RECOE "
......... POSA T ER GIPTI IS, B
........ ING=BUPSTRAETETNS, FO

...... 7 END:

POSITION OF EXECUTION EPRCR
This statement .gave an incorrect value of 8.

/

On the sssungtion that all of vour previcus
responnes wers true, the indizated agprassion
Centainz 3 g1l erer, Thea texsin for thas ga
that sou ase that 2l varjanles contarnsy within
1t contain correct values, tut the dertination
variable mav tut cirtarn the resulting value.

O .

10

T the stutont }pul rénpvﬁdod h§ Qﬂyinﬁ‘that sone ot the vupiub]pg
hnd ques{iunwblc values, then oveor unn]yais_wnu}d cohtinﬁeﬂin the reyvra§
direction Tookine for slatements which effect those now variables,

It is~hopvd Lhat thi§ simple example demonstrates Lho'typn‘of"
antlysis 9crforméd. By siving the éiudcnt.numorous inte]ligeﬁt comments
nbuut'poﬁifinns in his progran which are relevant to the execﬁtioﬁ erfnr,

vit is hoped that Lhe sﬁudvnt will coaprehend why his error occurred. As
dnring compile~time error analymié, nﬁﬂerous sugpestions are mede to the
: studeﬁts, but 1t is ghey who nust decide how to correet their programs

since only they can know what their prosrams were supposed to qo.
]

Conelusion
i‘!) E?li’!ur;f!t;jé . f.!xi i ;\:1g§;ﬂc' ft:i:; L121;§\?1£:§511‘;§ :I;I :l}xjwr'«\ﬁxtﬁft 'i;c; })!‘L‘;ﬁ!'t!&t; error

ann}}u:iﬂ f&fwf onqﬁr&éi:ﬁ*s 1§n‘:zcti\hition of o ;nwux§anwdlut lntu:unﬁx;"tuﬁcﬁ”'
or "eonsultant". When a‘comﬁilc-tlmo aynleetic errOf is debectéﬁ,‘thé
diagnostic systen tries to "prompb™ {he studend into analyzing the error
situntion by sivine thebstudént‘hiuts in the fornm of."possiblc cé%rections"
Lo the program, ﬁor an execubtion error, {he diggnoatic syﬁtem Lrivs.to
direct the student in analysingg the errof}sltﬂﬁtion by showing'he&‘v&fioﬁs
relevant sactions of the‘progfam wore actunlﬁ& exccnted. -

, At the preosent time, the two diagnostic systems described have
been inplemented in prototype forﬁ in the interactive compiler on the
PIATO 1V computer-aided instruction system. Work is-in progress to refine

the initinl versicns and to provide more complete terminology for communi-

catine with the stodent.

m‘

I\ij?hﬁxf NCRS

I"‘t\’.ﬁ.\. Ao Moy "An Anndysias Sycten For Fxeeution=Time IMerors
TheDe Thegine Doprrtment of Corputer Sceicnee, Univeorsily of Ilhnmv
at Urbhann<Chaunpaisn, Jan, 197%.

Nievergell, Jeo, Reingold, ®. M., znd Wilcox, T. R., "the Automation

of Introdrctory Computer Science Courses," A, Ginther et al. {editors),
Intern a{,m'ml L‘owpmmg, Symposium 1973 3, North-}{ollm& Mblishing
(‘(.)e s .} ‘)r ‘; . .

Tindall, M. M., "Interactive, Table-Driven Compiler Error Analysis,"
fo;thuvunn' Fn.D. thesie, Department of Computer Science, University
of Tllinoigs at Urbana-(‘hﬂ_r upaign.

Wilcox, T. R., "The Interactive Compiler As A Consultani In The
Computer Alded Instruction of IMogmrammims," 7Lh Annual Princeton
Conference on Information Sciences and Systems, 1973. -

